Efficient Edge Learning for Thermal Vision
Closing the Robustness Gap in Edge-Based Perception

Zubin Bhuyan

Civil and Environmental Engineering
University of Massachusetts Lowell

NEW ENGLAND ITS 2025 ANNUAL INTERCHANGE
Boston, MA
October 9, 2025

LLLLLL



Edge Al vs. Foundational Models

Foundational Models (Cloud / General-Purpose)
- Massive scale & resources.
- Require centralized compute, connectivity, and energy.

- Offer broad generalization but lack contextual grounding in
real-world conditions.

Edge AI (Task-Specific & Adaptive)

- Runs on-device, real-time perception and decision-making.
- Optimized for low power, low latency.

- Environment-aware and self-tuning: adapts to sensor noise,
lighting, or hardware variation, ideal for deployed systems.
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Active Learning for Edge Al

Hybrid Workflow

- The model is trained on a central server and deployed to the Training

edge device for continuous inference. Inference

Continuous Inference & Data Selection

- While running on-device, the model analyzes incoming Labeled Active Learning
data streams in real time and selects informative samples Training Cycle Unlabeled
for future training, without interrupting inference. Data pataFool

Edge Device Setting

- Platforms: Raspberry Pi CM + HAILO Accelerator 26T. Add
samples Select
- Connected via 4G, LoRa to servers and nearby devices to training Oracle / samples
such as flashing signs or alarms for local coordination data Data Labelling
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Task: Pedestrian Detection

Environmental Diversity &
Generalization: Our base dataset spans
urban parks, dense cityscapes, and tree-
covered suburban roads.

Improved Generalization: Diverse
locations and conditions help the model
more accurately detect pedestrians across
various real-world scenarios.
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Sample images from our thermal dataset used to train the
deep learning detection model.
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Why Thermal?

« Privacy-Preserving: Converts people and vehicles into non-identifiable heat maps, ideal for privacy-sensitive
monitoring (e.g., smart mobility, infrastructure).
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Why Thermal?

« See Beyond Light: Captures scenes in complete darkness or
glare, maintaining reliable object shape and size detection
where RGB fails.

. All-Weather Robustness: Thermal imaging can retain >90%
detection reliability in fog, rain, and low light, while RGB
accuracy can drop >30% under the same conditions. [!]

« Lightweight Processing: Uses a single intensity channel,
reducing bandwidth and compute demands- 1ideal for efficient
edge inference.

Comparison of nighttime images: RGB vs. thermal.

11 J.M.R. Velazquez, et al., Analysis of Thermal Imaging Performance under Extreme Foggy =
Conditions: Applications to Autonomous Driving, J. Imaging, Nov 2022. !A
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Dataset for Pedestrian Detection

« Environmental Diversity & Generalization: Our
base dataset spans urban parks, dense cityscapes,
and tree-covered suburban roads.

. Improved Generalization: Diverse locations and
conditions help the model more accurately detect
pedestrians across various real-world scenarios.

2024-12-19 13:33:

Challenges:

. Limited Training Data: Annotating data for
every new location or condition 1s costly.

o Domain Shift: When models trained in one

location are deployed in a new environment, Sample images from our thermal dataset used to train the deep
detection accuracy can drop sharply. learning detection model.
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Domain Adaptation

“Performance drop due to domain-shift is an
endemic problem.”

Domain Adaptation: The scenario where model 1s
initially trained with a dataset, which is usually not
small, but its distribution is different from the
target environment and 1s later updated with the
collected data.

The "Edge Case' Problem: Handling long-tailed
and edge-case instances 1s a major challenge for
deploying real-world computer vision models.
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lllustration of a domain shift in feature space
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Submodular Active Learning Loop
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Submodular Active Learning Loop
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Submodular Active Learning Loop
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Base model After )\+3 (+ 135 img)
Results =T mwuuuulllll il

Every iteration of the Active Learning step
selected 30-45 images from 4 sites.

Ablation Results (Yv11-S Base model only)

Model Variation mAPS50 mAP50-95

Baseline 77.6 61.4
+ cosine_Ir scheduler 79.9 62.7
+ label smoothing 80.4 63.9
+ warmup_epochs 82.4 64.4
s | s
Large 88.6 76.1 87.2 71.9 L Y N 2025 02:19_14:4771; 7o — % \ 2025 021914 :47 114
YOLOv11 % AN : .-"*::;\: T N , z:';“ ( * ad o o . ":‘:
(Base) Small 81.2 72.8 82.4 64.4 W s sl = !i‘ iy
A, 84.7 74.5 85.3 66.3 | ' '
Active
Learning A, 86.2 75.7 86.6 68.1
(Yvll- As 88.6 76.0 87.4 71.4

small)



Visualization of Detection and Tracking




Conclusions

. : JIERIY]
* Improved model efficiency and robustness: Implemented an on-device 3 1
active learning framework that actively selects informative thermal frames i P e Al e ':‘ '
for retraining. _ AR T R e

* ~3x fewer parameters: YOLOv1I1-small (~9.4M params) matches the
pedestrian mAP@50 of YOLOv11-large (~25.3M params) after active sub-

modular selection and server retraining.

* Edge Deployment: Deployed on Raspberry Pi1 and HAILO platforms with
real-time inference, connected via 4G / LoRa mesh for distributed
coordination.

* Future Direction: Explore federated or continual learning strategies for

collaborative model improvement across devices.
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Thank you!

This study was undertaken as part of a project funded by MassDOT. The authors are solely responsible for the facts, the
accuracy of the data and analysis, and the views presented herein.
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