


Background

Program Development

GA Joint Agency Data Management

Develop a comprehensive and centralized data acquisition program in order to:

- 1. Enhance and standardize data analytics capabilities for <u>ALL</u> projects
- 2. Eliminate unnecessary duplication of data and associated analyses
- 3. Lower overall agency costs

This Program is responsible for:

- 1. Developing an interagency program charter
- 2. Identifying a funding plan
- Developing guidelines and/or policy recommendations for data acquisitions

Interoffice Memo

DATE: August 3, 2020

FROM: Andrew Heath, P.E., State Traffic Enginee

): Margaret Pirkle, P.E., Chief Engineer & Jannine Miller, Director of

Planning

SUBJECT: Joint Agency Data Purchasing Program – Request for Approval to

Create Working Group

Transportation agencies throughout Georgia have an opportunity to increase planning and engineering efficiencies while reducing financial expenditures by strategically addressing missing, incomplete, and duplicate datasets. In the past five years, third parry datasets have matured to a degree acceptable for the purposes of planning, designing, and operating roadways, and these datasets can now be delivered at a fraction of the cost and time of traditional data gathering methods. By moving deliberately to achieve the goals set forth in GDOT's overall mission, ARC's TSMO Strategic Plan, and goals of other partner agencies, there is an opportunity to develop a comprehensive and centralized data purchasing program. The following examples illustrate how other state DOTs and MPOs have benefitted from the development of similar types of programs.

- MATOC saved \$16.4 million in delay and secondary incidents through cross jurisdictional data sharing
- 2. NJDOT realized \$1 million in annualized time savings for project analyses
- 3. MWCOG realized \$450,000 in annualized time savings for reporting requirements
- 4. NCDOT built a statewide, data-driven capital project prioritization program

Should a comprehensive and centralized joint data purchasing program be developed, GDOT, ARC, and other partner organizations further evaluate a framework for financing its development and ongoing costs through various individual projects. A case study from the New Jersey DOT conservatively estimated that approximately 180 work-hours were saved on each project congestion/mobility report by using enhanced data and analytics software as compared to traditional methods. Assuming a consultant loaded rate of \$150 per hour, the savings equate to approximately \$27,000 per project. Data analyzed from a single consulting firm's direct expenses indicated that each project spends approximately \$4,500 per project on small data acquisition. In FY 2019, GDOT let 326 maintenance and construction projects; should Georgia experience similar savings as New Jersey, over \$10 million will be saved in engineering cost each year.

GDOT and ARC have made significant strides in the past 2 years to consolidate and share data. For example, speed data and the associated analytics platforms were purchased by GDOT's Office of Traffic Operations to replace traditional roadside ITS infrastructure, which lowered per mile maintenance costs by 96%. Recognizing the value of the data and analytics, Traffic Operations

Organization

GDOT – Program Manager

ARC – Regional Planning & Coordination

ARC – Performance Analysis & Monitoring

ARC – Modeling

SRTA

Joint Agency Data Acquisition Group

GDOT – Office of Planning

GDOT – Office of Transportation Data

GDOT – Office of Traffic Operations

Local Agency(ies)

Funding Plan

FY 21 Spend	Proposed	Description				
\$0	\$2,000,000	Statewide trip, commercial vehicle, volume estimation, multimodal, and demographics analytics				
\$1,100,000	\$1,100,000	Statewide speed, travel time, congestion, user delay cost, and bottleneck analytics. Data Validation				
\$300,000	\$700,000	Statewide connected vehicle applications (ex. commercial vehicle safety, dangerous slowdown, hazard warning, mass messaging alerts				
\$0	\$700,000	Geodata and enhanced roadway attribute (ex. street centerline database and network coding)				
\$125,000	\$500,000	Software and data storage enhancements				
\$7,400,000	\$0	Excessive Agency Project Cost for Data Analysis and Acquisition				
\$8,925,000	\$5,000,000	TOTAL				
	\$3,925,000	Estimated Annual Agency Savings				

GDOT and ARC built upon existing TETC requirements with the following approach:

- Black text denotes TETC TDM mandatory requirements
- Blue text (i.e., blue text) denotes Georgia-specific text added or modified.
- In some cases, text from the TETC TDM is shown as blue strikeout text (i.e., strikeout). When text is shown in strikeout format, it is no longer in force, and is shown for reference in cases where it is important for the reader to understand that a TETC TDM statement has been removed

4. Third-Party Transportation Data Requirements

4.1 Introduction

This chapter of the Georgia Transportation Data Guidelines documents Georgia-specific data quality and delivery requirements for third-party Transportation Data acquisition. Since Georgia is a member of TETC and utilizes the TDM as its primary mechanism for acquiring third-party Transportation Data, it utilizes the requirements outlined in the TETC TDM as its standard for data reporting, quality, and standards.

Within TETC TDM, requirements were identified as mandatory, highly desirable, and desirable. Within this section black text denotes TETC TDM mandatory requirements and blue text (i.e., blue text) denotes Georgia-specific text added or modified. In some cases, text from the TETC TDM is shown as blue strikeout text (i.e., strikeout). When text is shown in strikeout format, it is no longer in force, and is shown for reference in cases where it is important for the reader to understand that a TETC TDM statement has been removed.

4.2 Real-time Traffic Speed and Travel Time Data Requirements

- 1. Base Real-Time Data Elements of Travel Time and Speed for all Roadways
 - a. Shall report travel time to the nearest whole second (or equivalent such as decimal minutes)
 - b. Shall report speed to a precision of the nearest 1 mph.
 - Shall report historical Travel Time and Speed (expected speed for the current time of the day and day of the week).
 - Shall report comparative Travel Time and Speed (current speed as compared to historical speed for time of day and day of week).
- Status Flag and Error Estimates
 - Shall provide a status flag(s) per segment for each reported Travel Time / Speed record to indicate the following:
 - Normal system operations with sufficient probe density to estimate travel times accurately.
 - Periods of low-traffic flow, travel time may need to be imputed from a combination of real-time data combined, historical data, and adjacent roadway segments.
 - Real-time probe data is not available, travel time is imputed based on historical data and / or adjacent roadway segments.

Example: Status flag are given scores of '30', '20' and '10.

- 1. 30: Indicates data feed is based on real-time data.
- 2. 20: Indicates combination of real-time and historical data.
- 3. 10: Indicates assumed free flow.
- Shall provide a numerical score and explanation that reflects the confidence or anticipated error in the estimate of the mean Travel Time & Speed.
- Data Quality Accuracy and Latency
 - a. Freeways
 - Shall have a maximum AASE of § 3 MPH or less in each of the following speed ranges: (all in MPH)

Rev. 1.0	Third-Party Transportation Data Requirement
11/1/23	13

Arcadis 2022 10 October 2025

Building Additional Guidance

GDOT and ARC also created general guidance for

- Dataset Implementation / Transition
- Data Ownership, Sharing, and Licensing

Purpose:

- Ensure principles espoused by TETC are captured on a state and regional level.
- Provide consistency for data acquisitions needed outside of TETC TDM

6. Transportation Data Implementation and Transition

6.1 Introduction

utline the a new a uirements

tion, and nature of ghout the sses any

7. Data Ownership, Sharing, and Licensing Requirements

7.1 Introduction

This chapter of the Georgia Transportation Data Guidelines documents Georgia-specific data ownership, sharing, and licensing guidelines for third-party Transportation Data acquisition. It is the intent of these guidelines to secure for Data Licensees nonexclusive licenses that can be used to reproduce, use, distribute, and make derivative works based on the Transportation Data provided by Data Licensor consistent with Data Licensees' transportation management, design, operations, and planning responsibilities. Further, it is the intent of the guidelines to create common licensing terms across Data Licensors in the state of Georgia.

Since Georgia is a member of TETC and utilizes the TDM as its primary mechanism for acquiring thirdparty Transportation Data, it utilizes the ownership, sharing, and licensing requirements outlined in TETC's TDM as a minimum standard. If third-party data is purchased from a source outside of TETC's TDM, these guidelines shall be utilized when developing contractual requirements.

7.2 Data Licensee Requirements

Data Licensee shall certify that it is one of the following:

- A government entity within the state of Georgia having jurisdictional, operational, or planning authority over a roadway network within Georgia and has executed a DUA with GDOT.
- A Subcontractor under contract to a government entity that has an executed DUA with GDOT and is authorized by said government entity to access / use the Licensed Data. Subcontractor shall provide a list of staff members that require access to the Transportation Data.

7.3 Grant of License

Data Licensor shall certify that:

- Data Licensee is provided a nonexclusive, unlimited user license for Transportation Data that is consistent with Data Licensee's traffic management, design, operations, public safety, policy making, planning, and validation / quality control / quality assurance responsibilities. This shall include the ability to:
 - Reprod
 - D. Use.
 - c. Disseminate through the following applications consistent with responsibilities related to transportation management and operations:
 - i. Operations centers management systems
 - Supported websites.
 - iii. Web services.
 - iv. Social media.v. Smart phone applications
 - vi 511

d. Create derivative works that include:

Rev. 1.0

46

Data Ownership, Sharing, and Licensing Requirements

sportation seamless nefit from imize the

propriate akeholder ng of the suitable ons, and ition Data create an

nentation encies on Program and data

ransition

3

Results

Program Benefits

11.9
Benefit-Cost
Ratio

57Calendar days saved / project

	Category	Benefit		
Direct	Time Saved Procuring Data	\$1,042,000.00		
	Data Cost Savings	\$19,525,000.00		
	Time Saved Analyzing Data	\$6,844,000.00		
Indirect	Value Added to Projects	\$3,325,000.00		
	Previously Exempt Projects	\$546,000.00		

Total 31,282,000.00

Additional Benefits

- 1. Data-driven ability to deviate from standards to create more practical, location-specific, and cost-effective designs.
- 2. Uniform data analysis capabilities, regardless of project size or budget.
- 3. Immediate access to data for project development and delivery.
- 4. Enhanced capabilities for project justification and visualization during public forums.
- Consult data transparency.
- 6. <u>Direct cost savings for all statewide local agency partners</u>.

Data Type	GDOT					ARC		Local
Data Type	District	Planning	Interstate Ops	Arterial Ops	Safety	Planning	Modeling	Agency
Speed/ Travel Time	Detour Routing	MAP-21 Reporting	NaviGAtor	SigOps	Screenings & TE Studies	Corridor Performance Monitoring	Activity Based Model	Speed Permits
Origin-Destination/ Trip		I-85 Corridor Study	Detour Analysis	Major Event Planning	TE Studies	Corridor Performance Monitoring	Regional Travel Demand Model	East West Connector Study
Volume Estimation	Bottleneck Impact Analysis		AAR User Delay Analysis	Cause & Cost of Congestion	Cross Street Impact Studies	Corridor Performance Monitoring	Regional Travel Demand Model	
Connected Vehicle/ Event	Content Classification Plan				Active Transportation Plan		Regional Travel Demand Model	
Freight		Statewide Freight Plan				Regional Freight Plan	Regional Travel Demand Model	Freight Cluster Plan
	Programmatic Performance Management Programmatic Tasks					In	dividual Projects	

"Even after we had developed the Congestion Management Process (CMP) and Travel Demand Model (TDM) we knew the data was limited. We needed enhanced data to infill the TDM. We needed enhanced data to infill the CMP. We were able do that with a third-party trip dataset.

"Once we had the data in hand, we got to ask ourselves a new question, 'What else can we do now that we couldn't do before?"

Mason Perrone, Rhode Island DOA

Thank You

Matt Glasser, PE
National TSMO Account Lead

Matthew.Glasser@arcadis.com

502.741.2787

TSMO Awards & Recognitions

Home Page

Obtain Access

Helpful Resources

NOCoE Case Study

CONTACT US: <u>DataSupport@dot.ga.gov</u>