

FDOT D5:

Redefining Real-Time Traffic Management

Kanaad Deodhar
Customer Success Manager, Flow Labs

October 2025

The Challenge

Lack of reliable, high-accuracy, low-latency, scalable traffic data for signal operations and corridor management.

- Field detector inaccuracy
- Field detector operational reliability
- Lack of connectivity/hardware

FDOT D5 High-Definition Engineering Intersection Data via Integrative Modeling (HEIDI)

- Generate accurate real-time data at region scale, with and without detection.
 - Without Detection: Achieve <20% error
 - With Detection: Achieve <10% error
 - **Real-Time:** <15 minute latency
- Feed data into real-time control systems via APIs

Our Approach:

Fusing connected-vehicle and hardware data to provide higher quality, more reliable data

Zero New Hardware

Our solutions require no additional hardware to install nor maintain.

Affordable

Our software-only allows us to offer a simple, low-cost offering.

Future-proofed Connected vehicle enabled technology lets you build for the future.

High-performance Artificial Intelligence allows you to measure and

Intelligence allows you to measure and optimize roadway performance.

Integrated Signal Performance Measures

0%

Infrastructure

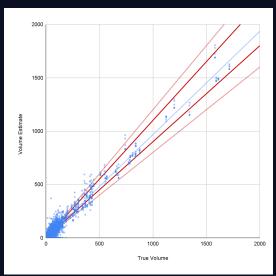
Phase 1

Small-scale ISPMs

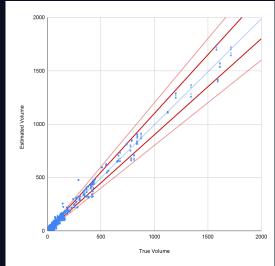
- Evaluation & Proof of Concept
- 18 intersections in two corridors, 1 urban and 1 rural
- Connected to FDOT data infrastructure to pull in hi-resolution data

Phase 2

Real-time API


- Using data fusion to provide lane-level volume estimates
- Latency ranging from 1-minute to 1-hour, with increasing levels of accuracy
- Feeding data straight back into FDOT D5 ITS data integration system

```
"lane_id": "D5I-5004-N1-3",
"turning_movement": "through",
"start_time": "2025-02-18T18:00:00.000Z",
"bucket_length_seconds": 900,
"volume estimate": 144.54878,
"volume_estimate_uncertainty": 3.967644
"lane_id": "D5I-5004-N1-3",
"turning movement": "right",
"start_time": "2025-02-18T18:00:00.000Z",
"bucket length_seconds": 900,
"volume_estimate": 11.169198,
"volume estimate uncertainty": 11.074003
"lane_id": "D5I-5004-N1-2",
"turning movement": "through",
"start_time": "2025-02-18T18:00:00.000Z",
"bucket_length_seconds": 900,
"volume estimate": 144.54878.
"volume estimate_uncertainty": 3.967644
"lane_id": "D5I-5004-N1-1",
"turning_movement": "left",
"start_time": "2025-02-18T18:00:00.000Z",
"bucket_length_seconds": 900,
"volume_estimate": 7.8474646,
"volume estimate_uncertainty": 4.5533247
"lane id": "2075-E1-2",
"turning movement": "left",
"start time": "2025-02-18T18:00:00.000Z",
"bucket length_seconds": 900,
"volume_estimate": 36.061413,
"volume_estimate_uncertainty": 7.240547
"lane id": "2075-E1-4",
"turning movement": "through",
"start_time": "2025-02-18T18:00:00.000Z",
"bucket_length_seconds": 900,
"volume estimate": 182,42833.
"volume_estimate_uncertainty": 16.285315
```



RESULTS

HEIDI was able to achieve high accuracy with and without detection

Probe Only Correlation Analysis $0.970*x + -3.59 R^2 = 0.960$

Integrated Correlation Analysis 0.993*x + 0.699 R² = 0.985

- Extremely high correlations between estimated and actual volumes
- Substantially outperformed FHWA accuracy benchmarks

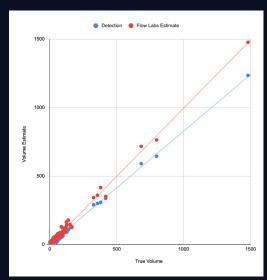
RESULTS

HEIDI was able to achieve high accuracy at a variety of data buckets and latencies

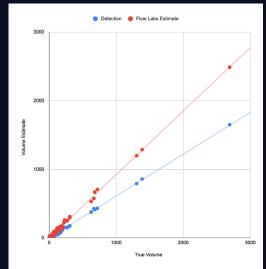
		Time Interval (minutes)							
		1	3	5	15	30	60		
	1	100.00%	107.27%	89.49%	24.68%	10.59%	7.28%		
	3	103.22%	96.23%	62.61%	24.33%	9.79%	7.63%		
	5	94.84%	73.28%	46.12%	19.25%	9.86%	7.87%		
	10	89.17%	44.64%	26.87%	15.11%	8.93%	7.50%		
	15	32.74%	21.72%	18.15%	13.33%	8.58%	7.46%		
Latency	30	32.18%	21.33%	18.25%	13.25%	8.36%	7.29%		
(minutes)	60	32.22%	21.34%	18.31%	13.29%	8.37%	7.29%		

- Probe Data achieved high accuracy levels at target latency levels.
- Integrated approaches yielded the highest accuracy

Probe Only - MAPE


		Time Interval (minutes)							
		1	3	5	15	30	60		
	1	35.09%	16.61%	13.82%	9.84%	7.71%	5.80%		
	3	35.09%	16.61%	13.81%	9.57%	7.52%	5.95%		
	5	35.09%	16.59%	13.62%	9.35%	7.08%	5.87%		
	10	35.04%	16.48%	13.48%	8.53%	5.88%	6.14%		
	15	34.07%	15.61%	11.93%	7.83%	6.07%	6.36%		
Latency	30	34.08%	15.54%	11.94%	7.90%	5.96%	6.27%		
(minutes)	60	34.08%	15.54%	11.95%	7.90%	5.97%	6.28%		

Integrated - MAPE



RESULTS

HEIDI was able to turn bad detection data into good detection data

Probe Only Correlation Analysis $R^2 = 0.992$

Integrated Correlation Analysis $R^2 = 0.997$

- Detection error was reduced by up to ~90%
- HEIDI provides a scalable approach to correct detector drift and error

Additional Use Cases

- Real-time SPM information available at scale
- Active detector health monitoring using correlation between detector and probe data

SWBTR Adva

MOVEMENT

SWBTR

NEBTR

NEBTR

NEBTR

SWBTR

SWBTR

Advanced Count

Advanced Count

Advanced Count

Advanced Count

Advanced Count

Advanced Count

Advanced Count

Advanced Count

DETECTOR

TYPE

ACTIVE

ACTIVE

ACTIVE

ACTIVE

ACTIVE

ACTIVE

STATUS 🔞

+-

.....

23.6%

CORRELATION INDEX

23.6%

ACTIVE

24.1%

24.1%

23.6%

24.1%

ACTIVE

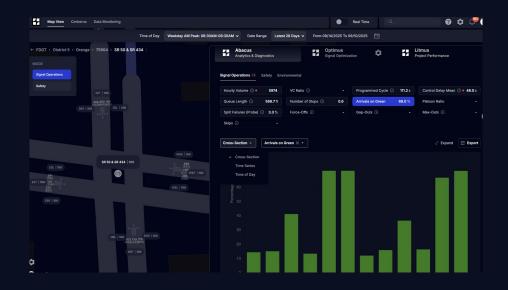
24.1%

25.3%

25.3%

(20) (20)

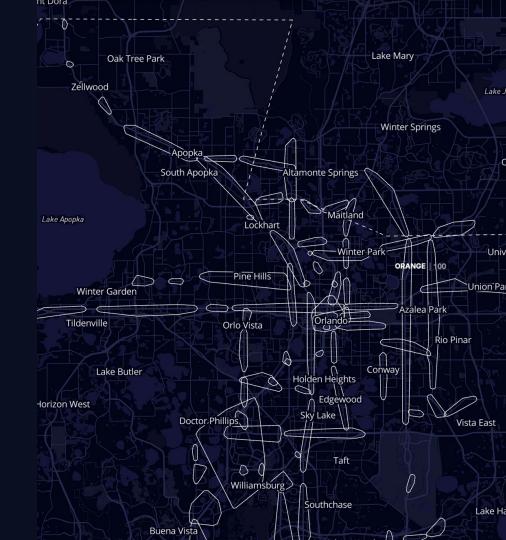
SWBTR Advanced Count ACTIVE 25.3%


NBTR Advanced Count ACTIVE 25.9%

Phase 3

Scale

- Now deployed to 1,998 signals across District 5
- ~1,400 of these currently enabled to provide integrated data
- Version2 of real-time API to enable additional data volume



Looking Forward

+Lessons Learned

- Parsing signal configuration information
- Volume calibration efforts
- Collaboration with surrounding MPOs and local agencies

Connected vehicles and new data infrastructure can enable scalable, real-time insights and a new way of managing traffic. Get in touch:

Kanaad Deodhar Customer Success Manager kanaad@flowlabs.ai

Tom Hoene
Director of Sales
tom@flowlabs.ai

HEIDI Case Study